

Case 3.1: Turbulent Flow over a 2D Multi-Element Airfoil

Summary of Results

Marco Ceze (marco.a.ceze@nasa.gov)

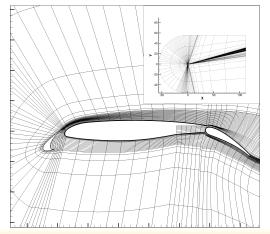
Case description

Objective:

- Test high-order methods in turbulent flow conditions over a complex geometry.
- Stiff discrete system poses a challenge for the nonlinear solver.
- Outputs of interest are lift and drag.

Flow and boundary conditions:

- $M_{\infty} = 0.2$ at $\alpha = 16^{\circ}$.
- $Re = 9 \times 10^6$ based on $c_{ref} = 0.5588$, fully turbulent.
- Adiabatic, no-slip wall at airfoil.
- Characteristics-based free stream at outer boundary.


• Gas properties:

- $\gamma = 1.4$ and Pr = 0.71.
- Choice of Sutherland's law or constant viscosity.

Geometry and provided mesh

- 4070 (coasest) quartic quads generated via agglomeration.
- Sequence of 3 meshes provided in quad and tri formats.
- Outer boundary located 50 to 100 chord-lengths away from airfoil.
- Inner and outer geometries provided.

Michigan **Engineering**

Participants codes and meshes

Cranfield:

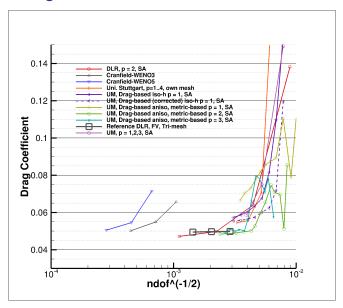
- Spalart-Allmaras (Edwards) turbulence model.
- WENO, 3rd and 5th-order approximations.
- Roe or HLLC for inviscid flux, centered average for viscous discretization.
- Backward-Euler with 1st-order Jacobian, LU-SGS linear solver.
- Linear triangular meshes with 1000 chord-lengths farfield distance.
- Convergence study on sequence of non-nested meshes.
- Runs performed on single-node, two 8-core Westmere cores (16 partitions).

Michigan:

- Spalart-Allmaras (ICCFD7 version) turbulence model.
- Metric-based anisotropic, isotropic *h*, and *hp*-adaptation.
- DG, Lagrange basis, full and tensor-product on reference domain.
- Roe solver for inviscid flux, BR2 for viscous discretization.
- CPTC, relaxed line-search, with in-house GMRES and line-Jacobi preconditioner.
- BAMG mesh (metric-based runs), HOW mesh (quad runs).
- Runs performed on 6 Westmere cores.

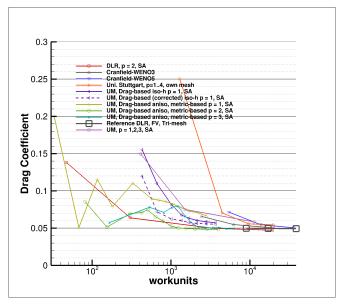
Participants codes and meshes

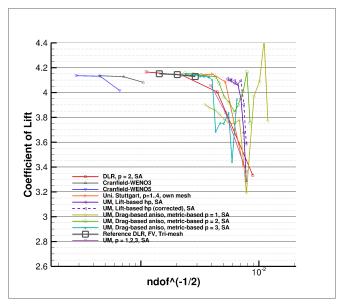
DLR:


- Spalart-Allmaras (ICCFD7 version) turbulence model.
- DG, hierarchical polynomial basis on physical space.
- Roe solver for inviscid flux, BR2 for viscous discretization.
- Nonlinear *h*-or-*p*-multigrid with Backward Euler smoother.
- SER for CFL evolution.
- Structured curved meshes with farfield at 50 chords.
- GMRES with h-or-p-multigrid preconditioner and line-Jacobi smoother.
- 2, 4, 8, and 16 partitions.

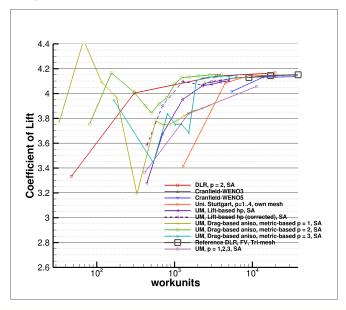
Stuttgart:

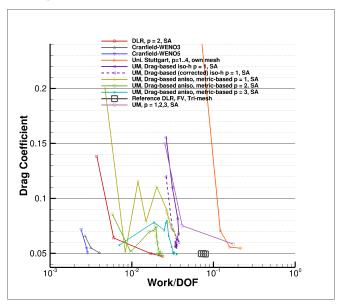
- Spalart-Allmaras turbulence model.
- DG, modal basis.
- HLL solver for inviscid flux, BR2 for viscous discretization.
- PTC solver with ILU-GMRES linear solver.
- High-order mesh via projection of normals.
- Runs performed on 8 cores.

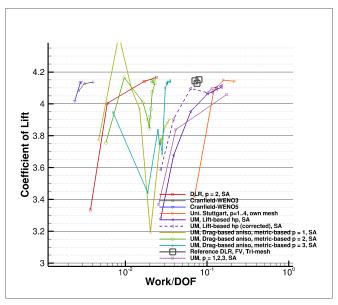

Drag convergence versus DOFs

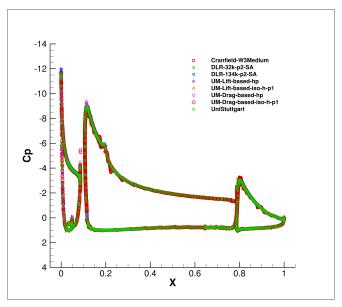


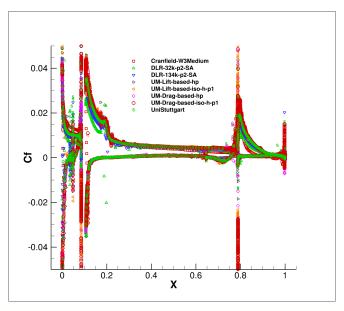
Drag convergence versus workunits






Drag convergence versus Work/DOF




C_p distribution

C_f distribution

Conclusions

- Smaller workunits spread this time.
- Different converged outputs are likely due to different domain boundaries.
- Good agreement between participants for C_p distribution.
- Some variation on C_f.
- Adaptivity saves work, error correction helps but not always reliable specially for lift.
- We would like all to reach constant Work/DOF in our algorithms.